Amino glycosides

• Streptomycin, Gentamicin, Amikacin

• Physical and chemical properties
 • Water soluble, stable in solution, more active in alkaline pH

• MOA:
 • Irreversible inhibitors of protein synthesis
 • Initially passively diffuses via porin channels and then actively transported
 • Transport is enhanced by cell wall active drugs such as penicillin and vancomycin
 • Once inside the cell - binds to 30S subunits which inhibits protein synthesis by:
 • Interfering with peptide formation
 • Misreading mRNA which causes incorporation of incorrect amino acids
 • Formation of non functional monosomes
Amino glycosides

- Resistance occurs via 3 mechanisms:
 - Inactivation by phosphorylation of the amino glycoside
 - Impaired intracellular transport
 - Receptor on 30S subunit may be deleted

- Pharmacokinetics
 - A: Poor oral absorption
 - D: Highly polar compounds that do not enter cells readily, in the presence of inflammation have a higher rate of CSF penetrance
 - M:
 - E: Renal excretion, normal half life is 2 - 3 hours, rising to 24 - 48 hours in renal failure
Amino glycosides

• Pharmacodynamics
 • Concentration dependent killing - significant post antibiotic effect, meaning that the antibiotic continues to have anti bacterial activity beyond the time which measurable drug is present - ALLOWS FOR ONCE DAILY DOSING
 • Toxicity is both time and concentration dependent
 • Toxicity is unlikely to occur until a threshold concentration has been breached
 • Once this concentration is reached, time above this concentration line becomes critical
• Adverse effects:
 • All amino glycosides are OTO and RENO toxic
 • More likely to occur when dosing is continued for 5 days
 • More likely in elderly with renal insufficiency
 • Concurrent use with other nephrotoxic drugs potentiates toxicity
 • Ototoxicity results in:
 • Tinnitus and high frequency hearing loss
 • Vestibular damage: vertigo, ataxia
Amino glycosides

• Adverse effects
 • In very high doses can have a CURARE like effect and generate neuromuscular paralysis - reversible with calcium gluconate and neostigmine

• Clinical uses:
 • Gram -ve
 • Almost always used in combination with beta lactic antibiotic because of synergism
Tetracyclines

- Antimicrobial activity:
 - Broad spectrum
 - Bacteriostatic
 - gram +ve, gram -ve and protozoa (malaria)
 - Inhibitor of 30S ribosomal subunit

- Resistance:
 - Impaired influx or increased efflux
 - Production of proteins that interfere with ribosomal binding
 - Enzymatic inactivation

- Pharmacokinetics:
 - A: Well absorbed orally - agents differ in degree of PO absorption (60 - 70% for tetra, 95% for doxy)
 - A portion of administered dose remains intraluminal and alter gut flora
 - D: Distributes widely into tissues, except CSF, also cross placenta
 - M: Anticonvulsants, chronic alcohol consumption shorten the half life of doxycycline by 50% through enzyme induction
Tetracyclines

• *E*: Excreted mainly in bile and urine, 10 - 50% excreted in urine
 - Doxycycline is eliminated by non renal mechanism
• Pharmacodynamics
 - Clinical use:
 - *Mycoplasma, Chalmydiae, Rickettsiae*
 - Used in combination regimes to treat gastric and duodenal ulcers
 - Adverse reactions:
 - *Hypersensitivity* it UNCOMMON
 - *GIT*: N/V/D
 - *Bone*: binds to calcium deposited in foetal teeth leading to enamel dysplasia
 - *Liver*: Impaires hepatic function
 - *Renal*: RTA secondary to nitrogen retention
 - *Photosensitisation*
Macrolides

• Erythromycin
 • Antimicrobial activity: gram + ve (pneumococci, strep, staph), gram -ve (neisseria, bordetella, treponema)
 • Acts via protein inhibition of the 50S subunit
 • Activity is enhanced by alkaline pH
 • Pharmacokinetics:
 • A: Enteric coated as gastric acid interferes with absorption
 • D: Distributed widely except brain and CSF
 • M: Half life 1.5 hours
 • E: Excreted in bile
 • Clinical Use: Drug of choice in Corynebacterium, CAP, penicillin substitute in allergic patients
 • Adverse effects: N/V/D, Cholestatic hepatitis,
 • Drug interactions: Anticoagulants, Theophylline, Cyclosporin, Methylpred
Macrolides

• Clarithromycin: derived from erythromycin
 • Same MOI
 • Adv: Better PO Absorption, metabolised in liver - major metabolite has antimicrobial activity, lower incidence of GI intolerance
 • More active against MAC, Toxoplasma, M leparae

• Azithromycin - differs primarily in PK properties
 • Large Vd, long half-life - therefore once daily dosing, and shortened duration of treatment
Clindamycin

- Anti bacterial activity -
 - Strep, staph and pneumococci are inhibited, enterococci and gram -ve are resistant
- MOI: Binds to 50S subunit
- Pharmacokinetics:
 - A: Well absorbed PO
 - D: Well distributed, penetrates well —> except brain and CSF, penetrates well into abscess
 - M: Liver, half life around 2 - 2.5 hours
 - E: No dose adjustment in renal failure
- Clinical uses:
 - anaerobic infection caused by bactericides and mixed infections
 - Female GU tract infections
- Adverse effects:
 - N/V/D
 - Impaired LFTs + D.Diff colitis
Sulfonamides

- Sulfamethoxazole
 - Antibacterial activity: gram +ve, gram -ve, norcadia, chlamydia and some protozoa
 - Bacteriostatic alone, bactericidal with trimethoprim
 - MOA: Interferes with folate production and therefore DNA synthesis, doesn't effect mammalian cells because of exogenous folate production
 - Synergism with trimethoprim, because trimethoprim acts on sequential step of folate synthesis
 - Adverse reactions: fever, rash, dermatitis, N/V/D. Can crystalise in urine and cause obstruction, can cause granulocytopenia
Chloramphenicol

• Antibacterial activity: Bacteriostatic, broad spectrum Abx
 • H. influenzae, N meningitidis and some bactericides

• Pharmacokinetics
 • A: Rapidly absorbed orally
 • D: Widely distributed to virtually all tissues including CSF
 • M: Most of the drug is inactivated by conjugation
 • E: Renally excreted - need not be dose reduced in renal failure, but needs to be altered in hepatic failure
Chloramphenicol

- Adverse Reactions:
 - GI - N/V/D
 - Bone marrow - Dose related reversible red cell suppression, aplastic anaemia
 - New born toxicity - Gray - Baby Syndrome
 - Interactions - inhibits microsomal enzymes - increased serum concentrations for
 - Phenytoin, Warfarin
Quinolones

- Antibacterial effect: gram +ve, -ve and pseudomonas
- MOA: Block bacterial DNA synthesis by inhibiting topoisomerase 2 (DNA gyrase)
- Pharmacokinetics:
 - A: Good PO bioavailability 80 - 95%
 - D: Large Vd
 - M: T1/2 3 - 10 hours
 - E: Renally excreted
- Adverse Reactions: N/V/D, QT prolongation, damages growing cartilage therefore not for use in under 18 year olds.
Metronidazole

• Inhibits nucleic acid synthesis
• Good for anaerobes and protozoa esp C Diff
• AE: N/D, Abdo pain, metallic taste, disulfram effect when taken with alcohol
Disinfectants

- Disinfectant - strong chemical agents that inhibit or kill microorganisms
- Antiseptics - are disinfecting agents with sufficiently low toxicity for host cells and so can be used on skin (Alcohol)
Anti - protozoal agents

- Treatment of malaria
 - Four species of plasmodium cause human malaria
 - Falciparum
 - Vivax
 - Malariae
 - Ovale
 - Falciparum is responsible for nearly all serious complications
- Chloroquine is used for prophylaxis only in areas known to be infested by sensitive parasites
 - Doxycycline for areas with very high prevalence of multi drug resistant malaria
- Sensitive Falciparum malaria and non falciparum first line —> if from sensitive are —> Chloroquine
- Falciparum malaria —> non sensitive —> PO Quinine + Doxycycline
- Vivax and ovale —> Primaquine after Chloroquine
Chloroquine

- Utility against falciparum species has been seriously compromised by resistance
- Mechanism of action: controversial - blood schizontocide
 - rapidly ceases fever and clears parasite load in 48 - 72 hours
- Pharmacokinetics
 - A: Rapid and complete
 - D: Rapid and widespread - very large Vd
 - M:
 - E: Urine over 3 - 5 days
- Clinical uses:
 - Choice in non falciparum and sensitive falciparum cases
- Adverse effects: well tolerated generally
 - G6PD - haemolysis
 - Puritis
 - N/V/D/Abdominal pain
Quinine

• First line for falciparum species especially in severe disease
• MOA: Blood schizontocide - not active against liver stage parasites
• Clinical use: Falciparum malaria + severe infections
• Pharmacokinetics:
 • A: Rapid
 • D: Widely distributed
 • M: Liver
 • E: Kidney
• Adverse effects:
 • Cinchonism - Tinnitus, headahce, nausea, dizziness, flushing
 • Haematological - haemolysis, leukopenia
 • Can cause hypoglycaemia
 • Can stimulate contractions in late pregnancy (still use)
Primaquine

- Drug of choice for elimination of dormant liver forms of vivax and ovale
- Antimalarial actions: gametocidal, active against dormant hypnozoite

Pharmacokinetics:
- A: Well absorbed orally
- D: Widely distributed into tissues
- M: Rapidly metabolised in liver
- E: Urine

Adverse effects:
- Generally well tolerated
- GI upset more common at higher doses
Antivirals

• Viral replication takes several steps -
 • Attachment, entry through cell membrane, uncaring of nucleic acid, synthesis of regulatory proteins, synthesis of late proteins, assembly of viral particles, release
 • Antivirals interfere with these steps
Acyclovir

- Guanosine derivative - active against HSV 1, 2, and VZV

- Three steps before drug activation -
 - Converted into monophosphate derivative by viral cell specific thymidine kinase
 - Competes for DNA polymerase
 - Causes DNA chain termination

- Pharmacokinetics
 - A: 15 - 20% PO bioavailability
 - D: Well distributed, CSF concentrations are 50% of serum
 - M:
 - E: Renally excreted through filtration and tubular excretion

- Long term suppression of genital herpes, reduced symptoms by 2 days, reduced viral shedding, IV for HSV encephalitis
Principles of HIV therapy

- Start treatment if CD4 count is < 200 or verifier high or opportunistic infection
- Use multiple agents to avoid resistance
- Neucleotide RTI
 - Competitively inhibit HIV 1 reverse transcriptase
 - E.g. Lamivudine - cytosine analog when incorporated it results in premature termination of the DNA chain
- Non nucleoside RTI
 - Bind directly to HIV1 reverse transcriptase and inhibits
 - Delavirdine
- Protease inhibitor
 - Results in immature, non infectious viral particles
- Entry inhibitor
 - gp120 binding, prevents viral entry into cell
 - E.g. enfuvitide
Principles of HIV therapy

• Integrase inhibitor
 • Inhibits transfer of reverse transcribed HIV DNA into chromosomes of host cells

• M2 proton pump inhibitor and inhibition of uncoating of viral RNA
 • Amantadine