Anti-Thrombotic Drugs

PHARMACOLOGY

DR HUNG DIEP
Overview

- Anti-thrombotic drugs include:
 - Anticoagulants
 - Fibrinolytics
 - Antiplatelets
Anticoagulants

- Interrupt the coagulation pathway to prevent clot formation
- Types include:
 - Indirect thrombin inhibitors
 - Vitamin K antagonists
 - Direct Factor Xa inhibitors
 - Direct thrombin inhibitors
Indirect Thrombin Inhibitors

- Anti-thrombotic effect is exerted by interaction with anti-thrombin
- Bind to anti-thrombin, which is a plasma protein that prevents the action of thrombin
 - Ultimately stops the conversion of fibrinogen to fibrin
- Includes:
 - Unfractionated heparin
 - Low molecular weight heparin
 - Fondaparinux
Unfractionated Heparin

- Binds to anti-thrombin III
 - Inhibits clotting factor proteases including Factors IIa, IXa, Xa
- No fibrinolytic activity
- Effect is monitored by Activated Thromboplastin Time
- Increases aldosterone production
- Reversal agent is protamine sulphate
Pharmacokinetics

- A: parenteral only (IV, SC)
- D: high protein binding
- M: liver and reticuloendothelial system metabolism
- E: metabolites excreted in urine
Indications

- Prevention/treatment of VTE
- Acute coronary syndrome
- Arterial thromboemboli
- Disseminated intravascular coagulopathy
Adverse Effects

- Bleeding
- Allergy
- Reversible alopecia
- Osteoporosis and fractures
- Heparin-induced thrombocytopenia
 - Occurs due to antibodies against heparin and platelet factor 4 compound
 - Usually an IgG compound so takes at least 5 days to form
 - Occurs in 1-4% of patients treated with unfractionated heparin for a minimum of 7 days
 - Rates lower with LMWH
 - Treated by cessation of heparin and use of direct thrombin inhibitors (e.g. bivalirudin)
Low-Molecular Weight Heparin

- Binds to anti-thrombin III to facilitate inactivation of Factor Xa
- Similar efficacy to unfractionated heparin
- No fibrinolysis
- No method of monitoring
- Poor efficacy of protamine in reversal
Pharmacokinetics

- A: subcutaneous only (90% bioavailability)
- D: high protein binding
- M: slight hepatic metabolism
- E: renal excretion
Indications

- Prevention/treatment VTE
- Acute coronary syndrome
- Arterial thromboemboli
Adverse Effects

- Bleeding
- Allergy
- Heparin-induced thrombocytopenia
 - Lower risk compared to unfractionated heparin
Vitamin K Antagonists

- Warfarin inhibits vitamin K epoxide reductase
- Decreases carboxylation of Factors II, VII, IX, X, and protein C and S
- There is an 8-12h delay in anticoagulant action due to depletion of protein C
- Effect can be monitored via the Prothrombin Time/INR
Pharmacokinetics

- Warfarin
 - A: oral (100% bioavailability)
 - D: 99% protein bound, small Vd
 - M: hepatic metabolism into inactive products by CYP450 enzymes
 - E: metabolites excreted in bile and urine
Indications

- Prevention/treatment of VTE
- Prevention of thromboembolism with prosthetic heart valves
- Prevention of stroke in those with increased embolic risk
Adverse Effects

- Bleeding
- Hepatic dysfunction
- Multiple interactions with other drugs
 - Particularly P450 CYP2C9 inducers or inhibitors
Direct Factor Xa Inhibitors

- Inhibits downstream activation of prothrombin
- Increases Prothrombin Time/INR
- Lower bleeding rates compared to Warfarin
- No need for monitoring of therapeutic action provided renal function is stable
Pharmacokinetics

- Rivaroxaban
 - A: oral, high bioavailability
 - D: high protein binding, moderate Vd
 - M: 2/3 hepatic metabolism
 - E: 1/3 excreted unchanged in the urine; metabolites excreted renally and faecally
Indications

- Prevention of stroke in AF
- Prevention/treatment of VTE
- Treatment of pulmonary embolism
Adverse Effects

- Bleeding
- Peripheral oedema
- Muscle spasm
- Hepatotoxicity
Direct Thrombin Inhibitors

- Exert their anticoagulant effect by directly binding to the active site of thrombin
 - Prevents subsequent activation of fibrinogen to fibrin
- Includes Dabigatran, Bivalirudin
 - Dabigatran is absorbed as a prodrug (dabigatran etexilate), which is then converted into the active form
Pharmacokinetics

- **Dabigatran**
 - **A**: oral, with rapid absorption and metabolism of the prodrug into its active form
 - **D**: moderate Vd
 - **M**: hepatic metabolism into its active form, minimal metabolism of the active form itself
 - **E**: urinary excretion in its active form
Indications

- Prevention/treatment of VTE
- Non-valvular AF
Adverse Effects

- Bleeding
 - Particularly gastrointestinal bleeding
- Gastritis
Fibrinolytics

- Preferentially activates plasminogen
 - Plasminogen is bound to fibrin
- Active plasmin results in breakdown of fibrin clots
- Plasmin naturally aims to confine fibrinolysis to the formed thrombus and avoid systemic activation
- Includes: alteplase, tenectaplaese
Fibrinolytics

Diagram showing the activation and inhibition of plasminogen, with various stimuli leading to the formation of plasmin and the degradation of fibrin. Key components include:

- Activation:
 - Various stimuli
 - Blood procoactivator
 - t-PA, urokinase
 - Streptokinase

- Inhibition:
 - Antiactivators
 - Aminocaproic acid

- Pathways:
 - Plasminogen activation leading to Plasmin
 - Plasminogen degradation products
 - Fibrinogen degradation products, D-dimer
 - Procoactivator and Anistreplase
 - Thrombin and Factor XIII

Overall, the diagram illustrates the complex network of fibrinolytic processes and inhibitors.
Pharmacokinetics

- **Tissue Plasminogen Activator (t-PA)**
 - A: IV
 - D: low Vd
 - M: hepatic metabolism
 - E: hepatically cleared
Indications

- Acute STEMI
- Massive pulmonary embolism
- Acute ischaemic stroke
- Acute VTE with haemodynamic instability
Adverse Effects

- Bleeding
- Allergy
Platelet function is regulated by three categories of substances:

- Agents generated within the platelet that act within the platelet (thromboxane A2)
- Agents generated within the platelet that interact with membrane receptors (ADP, prostaglandin)
- Agents generated outside the platelet that interact with the platelet membrane
Thromboxane A2 Inhibitor

- Aspirin is rapidly converted into salicylic acid
- Irreversible COX inhibitor
 - COX-1 is responsible for TxA2 production, which is a mediator of platelet aggregation and vasoconstriction
 - COX-2 is responsible for inflammation and cancer
- Results in decreased platelet aggregation
- Low dose aspirin preferentially blocks COX-1
Pharmacokinetics

- Aspirin
 - A: oral, high bioavailability
 - D: salicylate 80-90% protein bound
 - M: converted to salicylic acid in the gastrointestinal mucosa and liver
 - E: renal
 - Effects of aspirin last for the life of the platelet
Indications

- Acute coronary syndrome
- Atherosclerosis
- Inflammation
- Prevention of recurrent ischaemic stroke and TIA
- Prevention of pre-eclampsia
Adverse Effects

- Gastrointestinal irritation
- Bleeding
- Bronchospasm
- Angioedema
Dipyridamole is a phosphodiesterase inhibitor
- Increases platelet cAMP and cGMP activity
- Results in inhibition of platelet function (adhesion and aggregation)
- Only effective in combination with Aspirin
Pharmacokinetics

- Dipyridamole
 - A: oral (70% bioavailability)
 - D: large Vd, 97-99% protein bound
 - M: liver
 - E: bile
Indications

- Prevention of recurrent ischaemic stroke and TIA
Thienopyridines

- Clopidogrel is a produg that is rapidly metabolised into its active form
- Irreversibly binds to platelet P2Y_{12} (ADP) receptor
- Inhibits platelet aggregation for the life of the platelet
- Inhibits amplification of platelet activation
Pharmacokinetics

- Clopidogrel
 - A: oral, rapid
 - D: 94-98% protein bound
 - M: hepatic into active form
 - E: urine and faeces
 - Effect lasts for the life of the platelet
Indications

- Acute coronary syndrome
- Atherosclerosis
Adverse Effects

- Bleeding
- Skin reactions
- Gastrointestinal ulcer
- Pancytopenia